

Dendro Dawgz

Team Members: Zachariah Derrick, Nile Roth, Niklas Kariniemi, Asa Henry

Team Mentor: Italo Santos

Clients

- Dr. Andrew Richardson
- Dr. Mariah Carbone
- Dr. George Koch
- Austin Simonpietri

Problem statement

- Must use a laptop while in a tree (sometimes a Redwood; the tallest tree on Earth)
- Software does not reliably run on Windows, yet is limited to the OS
- Can only view one dataset at a time
- Data is improperly formatted for statistical analysis
- Users are forced to share data via Email or Google Drive - 8 hours is the recorded time to upload data

Data

Solution Overview

- Collect data from dendrometer using the FTDI API
- Use metadata to make data more parsable and add identification for what dendrometer collected the data
- Use MPAndroidChart to create interactive ways to visualize the data
- Ability to have two or more datasets to compare and analyze simultaneously
- Ability to upload the data to the cloud, specifically in Cloud Firestore, to increase ease of sharing

Key requirements

We met with clients multiple times to flush out the requirements for the project. This included having discussions out what they wanted out of the project, and what we are able to complete in the given time period

- Application will be implemented on the Android platform
- Include a backend that is capable of reading in data from a TOMST dendrometer
- Include a frontend that initiates the data reading from the dendrometer and stores the data in the correct location
- Frontend will include a GUI that displays the data
- Application will support metadata creation and a method of grouping files together
- Application will implement a cloud export and sharing system

Environmental requirements

- A wired connection is necessitated since the dendrometer does not have a receiver for wireless connection
- The use of an FTDI chip necessitates using the C version of the FTDI library

Risks			
	;ʹʹߤ®»°¦		
	Corrupt Data	Database Failure	Massive DataSets
Severity Level:	Тwo	Three	Four
Concern:	Transferring & Translating	Network or system failure	Excessively large data sets must be handled
	Data must not be skewed	remporary mability to obtain data	Seamless rendering despite size of set
Mitigation:	Test multiple edge cases	Cloud Firestore (Firebase)	AChartEngine
	Identify suspicious I/O		

Feasibility

To prove feasibility for our application, we analyzed the four main challenges, and investigated solutions to mitigate these risks

- Reading in data from the dendrometer
- Creating a frontend for a mobile application
- Exporting and sharing data using the cloud
- Computing and displaying statistical analyses

MPAndroidChart

Schedule

We are here!

Ideal release date

inn

Task Title	Start Date	End Date							2024			
			September	October	November	December	January	February	March	April	May	
Team Standards and Inventory	09/18/23	10/06/23		Team Standard	is and Inventory				i			
Team Website	09/18/23	12/08/23			i	Team Website			i			
Mini Intro	09/25/23	10/13/23		Mini Intro	!							
Tech Feasibility	10/09/23	11/03/23			Tech Feasibilit	у						
Requirements Specifications	10/23/23	11/17/23			Requ	irements Specifications						
Design Review	10/23/23	11/30/23			i	Design Review						
Tech Demo	11/20/23	12/04/23				Tech Demo			i			
Mini Video	11/20/23	12/08/23				Mini Video				1		
Winter Break	12/15/23	01/16/24					Winter B	Break				
Projected Spring Schedule												
Backend to Read Data	01/16/24	02/09/24			i			Backend to	Read Data			
Convert Data	01/16/24	02/16/24			i			Conve	rt Data			
Basic UI	01/16/24	03/01/24			!				Basic UI			
Store Data in Database	01/16/24	03/15/24			:				Sto	re Data in Database		
Functionality to Find Stored Data	01/16/24	03/29/24								Functionality to Find	Stored Data	
Analyse and Display Data	01/16/24	04/12/24			i					Analyse an	nd Display Data	
Update and Polish UI	01/16/24	05/03/24			i						Update and Pol	lish UI

inin

Conclusion

Our clients want a better solution to the current way they collect dendrometer data. Having to carry up a big, heavy laptop makes the process harder and more dangerous

We will create a mobile application on Android that will have the ability to read in data, store that data, visualize the data, and share the data

We took a look at what our functional requirements, non-functional requirements, and environmental requirements are

We also completed a risk assessment which includes taking a deeper look into corrupted data, massive datasets, and database failure

We took a look at what are our four major problems and how we plan to solve them

After this we plan to focus on finishing up our prototype so we can start to show what we are actually building

Thank You

Any Questions

